Copied to
clipboard

G = C42.195C23order 128 = 27

56th non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.195C23, D4⋊C813C2, C4⋊C4.292D4, C4⋊Q162C2, (C2×D4).48D4, (C2×Q8).24D4, D42Q831C2, C4.33(C4○D8), (C4×C8).44C22, C4⋊Q8.16C22, C4⋊C8.163C22, C4.6Q1612C2, (C4×D4).27C22, C2.23(D44D4), C4.33(C8.C22), C2.15(D4.7D4), C22.161C22≀C2, C22.49C24.1C2, (C2×C4).952(C2×D4), SmallGroup(128,366)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — C42.195C23
C1C2C22C2×C4C42C4×D4C22.49C24 — C42.195C23
C1C22C42 — C42.195C23
C1C22C42 — C42.195C23
C1C22C22C42 — C42.195C23

Generators and relations for C42.195C23
 G = < a,b,c,d,e | a4=b4=1, c2=d2=a2, e2=a2b2, ab=ba, cac-1=dad-1=a-1, eae-1=ab2, cbc-1=dbd-1=ebe-1=b-1, dcd-1=ac, ece-1=bc, de=ed >

Subgroups: 264 in 109 conjugacy classes, 34 normal (12 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, Q16, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4×C8, D4⋊C4, C4⋊C8, C4.Q8, C42⋊C2, C4×D4, C4⋊D4, C4.4D4, C4⋊Q8, C2×Q16, D4⋊C8, C4.6Q16, D42Q8, C4⋊Q16, C22.49C24, C42.195C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C22≀C2, C4○D8, C8.C22, D4.7D4, D44D4, C42.195C23

Character table of C42.195C23

 class 12A2B2C2D2E4A4B4C4D4E4F4G4H4I4J4K4L8A8B8C8D8E8F8G8H
 size 111188222244444881644448888
ρ111111111111111111111111111    trivial
ρ21111-1111111-11-11-1-11-1-1-1-11-1-11    linear of order 2
ρ311111111111111111-1-1-1-1-1-1-1-1-1    linear of order 2
ρ41111-1111111-11-11-1-1-11111-111-1    linear of order 2
ρ51111-1-11111-1-1-1-111111111-1-1-1-1    linear of order 2
ρ611111-11111-11-111-1-11-1-1-1-1-111-1    linear of order 2
ρ71111-1-11111-1-1-1-1111-1-1-1-1-11111    linear of order 2
ρ811111-11111-11-111-1-1-111111-1-11    linear of order 2
ρ92222202-22-20-20-2-200000000000    orthogonal lifted from D4
ρ10222200-2-2-2-2000022-2000000000    orthogonal lifted from D4
ρ11222202-22-22-20-20-200000000000    orthogonal lifted from D4
ρ1222220-2-22-222020-200000000000    orthogonal lifted from D4
ρ13222200-2-2-2-200002-22000000000    orthogonal lifted from D4
ρ142222-202-22-20202-200000000000    orthogonal lifted from D4
ρ1522-2-20020-2002i0-2i000022-2-2-200--2    complex lifted from C4○D8
ρ1622-2-20020-200-2i02i000022-2-2--200-2    complex lifted from C4○D8
ρ172-22-200020-22i0-2i000002-22-20--2-20    complex lifted from C4○D8
ρ182-22-200020-2-2i02i00000-22-220--2-20    complex lifted from C4○D8
ρ192-22-200020-22i0-2i00000-22-220-2--20    complex lifted from C4○D8
ρ202-22-200020-2-2i02i000002-22-20-2--20    complex lifted from C4○D8
ρ2122-2-20020-200-2i02i0000-2-222-200--2    complex lifted from C4○D8
ρ2222-2-20020-2002i0-2i0000-2-222--200-2    complex lifted from C4○D8
ρ234-4-44000000000000002-2-220000    orthogonal lifted from D44D4
ρ244-4-4400000000000000-222-20000    orthogonal lifted from D44D4
ρ254-44-4000-4040000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ2644-4-400-40400000000000000000    symplectic lifted from C8.C22, Schur index 2

Smallest permutation representation of C42.195C23
On 64 points
Generators in S64
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 17 15 5)(2 18 16 6)(3 19 13 7)(4 20 14 8)(9 62 57 54)(10 63 58 55)(11 64 59 56)(12 61 60 53)(21 32 34 28)(22 29 35 25)(23 30 36 26)(24 31 33 27)(37 48 52 44)(38 45 49 41)(39 46 50 42)(40 47 51 43)
(1 43 3 41)(2 42 4 44)(5 40 7 38)(6 39 8 37)(9 36 11 34)(10 35 12 33)(13 45 15 47)(14 48 16 46)(17 51 19 49)(18 50 20 52)(21 57 23 59)(22 60 24 58)(25 53 27 55)(26 56 28 54)(29 61 31 63)(30 64 32 62)
(1 27 3 25)(2 26 4 28)(5 24 7 22)(6 23 8 21)(9 49 11 51)(10 52 12 50)(13 29 15 31)(14 32 16 30)(17 33 19 35)(18 36 20 34)(37 60 39 58)(38 59 40 57)(41 56 43 54)(42 55 44 53)(45 64 47 62)(46 63 48 61)
(1 4 13 16)(2 15 14 3)(5 20 19 6)(7 18 17 8)(9 53 59 63)(10 62 60 56)(11 55 57 61)(12 64 58 54)(21 22 36 33)(23 24 34 35)(25 26 31 32)(27 28 29 30)(37 41 50 47)(38 46 51 44)(39 43 52 45)(40 48 49 42)

G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,17,15,5)(2,18,16,6)(3,19,13,7)(4,20,14,8)(9,62,57,54)(10,63,58,55)(11,64,59,56)(12,61,60,53)(21,32,34,28)(22,29,35,25)(23,30,36,26)(24,31,33,27)(37,48,52,44)(38,45,49,41)(39,46,50,42)(40,47,51,43), (1,43,3,41)(2,42,4,44)(5,40,7,38)(6,39,8,37)(9,36,11,34)(10,35,12,33)(13,45,15,47)(14,48,16,46)(17,51,19,49)(18,50,20,52)(21,57,23,59)(22,60,24,58)(25,53,27,55)(26,56,28,54)(29,61,31,63)(30,64,32,62), (1,27,3,25)(2,26,4,28)(5,24,7,22)(6,23,8,21)(9,49,11,51)(10,52,12,50)(13,29,15,31)(14,32,16,30)(17,33,19,35)(18,36,20,34)(37,60,39,58)(38,59,40,57)(41,56,43,54)(42,55,44,53)(45,64,47,62)(46,63,48,61), (1,4,13,16)(2,15,14,3)(5,20,19,6)(7,18,17,8)(9,53,59,63)(10,62,60,56)(11,55,57,61)(12,64,58,54)(21,22,36,33)(23,24,34,35)(25,26,31,32)(27,28,29,30)(37,41,50,47)(38,46,51,44)(39,43,52,45)(40,48,49,42)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,17,15,5)(2,18,16,6)(3,19,13,7)(4,20,14,8)(9,62,57,54)(10,63,58,55)(11,64,59,56)(12,61,60,53)(21,32,34,28)(22,29,35,25)(23,30,36,26)(24,31,33,27)(37,48,52,44)(38,45,49,41)(39,46,50,42)(40,47,51,43), (1,43,3,41)(2,42,4,44)(5,40,7,38)(6,39,8,37)(9,36,11,34)(10,35,12,33)(13,45,15,47)(14,48,16,46)(17,51,19,49)(18,50,20,52)(21,57,23,59)(22,60,24,58)(25,53,27,55)(26,56,28,54)(29,61,31,63)(30,64,32,62), (1,27,3,25)(2,26,4,28)(5,24,7,22)(6,23,8,21)(9,49,11,51)(10,52,12,50)(13,29,15,31)(14,32,16,30)(17,33,19,35)(18,36,20,34)(37,60,39,58)(38,59,40,57)(41,56,43,54)(42,55,44,53)(45,64,47,62)(46,63,48,61), (1,4,13,16)(2,15,14,3)(5,20,19,6)(7,18,17,8)(9,53,59,63)(10,62,60,56)(11,55,57,61)(12,64,58,54)(21,22,36,33)(23,24,34,35)(25,26,31,32)(27,28,29,30)(37,41,50,47)(38,46,51,44)(39,43,52,45)(40,48,49,42) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,17,15,5),(2,18,16,6),(3,19,13,7),(4,20,14,8),(9,62,57,54),(10,63,58,55),(11,64,59,56),(12,61,60,53),(21,32,34,28),(22,29,35,25),(23,30,36,26),(24,31,33,27),(37,48,52,44),(38,45,49,41),(39,46,50,42),(40,47,51,43)], [(1,43,3,41),(2,42,4,44),(5,40,7,38),(6,39,8,37),(9,36,11,34),(10,35,12,33),(13,45,15,47),(14,48,16,46),(17,51,19,49),(18,50,20,52),(21,57,23,59),(22,60,24,58),(25,53,27,55),(26,56,28,54),(29,61,31,63),(30,64,32,62)], [(1,27,3,25),(2,26,4,28),(5,24,7,22),(6,23,8,21),(9,49,11,51),(10,52,12,50),(13,29,15,31),(14,32,16,30),(17,33,19,35),(18,36,20,34),(37,60,39,58),(38,59,40,57),(41,56,43,54),(42,55,44,53),(45,64,47,62),(46,63,48,61)], [(1,4,13,16),(2,15,14,3),(5,20,19,6),(7,18,17,8),(9,53,59,63),(10,62,60,56),(11,55,57,61),(12,64,58,54),(21,22,36,33),(23,24,34,35),(25,26,31,32),(27,28,29,30),(37,41,50,47),(38,46,51,44),(39,43,52,45),(40,48,49,42)]])

Matrix representation of C42.195C23 in GL4(𝔽17) generated by

4000
41300
0001
00160
,
1000
0100
0001
00160
,
15400
3200
001212
00125
,
11500
11600
00013
00130
,
13000
01300
00016
00160
G:=sub<GL(4,GF(17))| [4,4,0,0,0,13,0,0,0,0,0,16,0,0,1,0],[1,0,0,0,0,1,0,0,0,0,0,16,0,0,1,0],[15,3,0,0,4,2,0,0,0,0,12,12,0,0,12,5],[1,1,0,0,15,16,0,0,0,0,0,13,0,0,13,0],[13,0,0,0,0,13,0,0,0,0,0,16,0,0,16,0] >;

C42.195C23 in GAP, Magma, Sage, TeX

C_4^2._{195}C_2^3
% in TeX

G:=Group("C4^2.195C2^3");
// GroupNames label

G:=SmallGroup(128,366);
// by ID

G=gap.SmallGroup(128,366);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,232,422,520,1123,570,521,136,2804,1411,718,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=1,c^2=d^2=a^2,e^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,e*a*e^-1=a*b^2,c*b*c^-1=d*b*d^-1=e*b*e^-1=b^-1,d*c*d^-1=a*c,e*c*e^-1=b*c,d*e=e*d>;
// generators/relations

Export

Character table of C42.195C23 in TeX

׿
×
𝔽